Elicitation of Experts’ Knowledge for Functional Linear Regression

Grollemund, P.-M., Abraham, C., Pudlo, P. and Baragatti, M.
paul-marie.grollemund@umontpellier.fr

Abstract
We present an approach to elicit experts’ knowledge about the Bliss model [1] which is a parcimonious Bayesian Functional Linear Regression model. We derive an informative prior from elicited information and we define weights to tune prior information contribution on the estimators.

Sparse Step function
\[
\beta_0(t) = \sum_{k=1}^{K} b_k 1_{[a_k, b_k]}(t) \tag{1}
\]

Bliss
Bayesian Functional Linear Regression with Sparse Step functions aggregates "weak learners" in a Bayesian way.

Data: \(y_i, x_i(\cdot) \) where \(x_i(\cdot) \in L^2([0, 1]) \)

Model: see [2, 5]
\[
y_i|x_i(\cdot), \theta \sim \mathcal{N}\left(\mu + \int_0^1 x_i(t) \beta_0(t) \, dt, \sigma^2 \right) \tag{2}
\]
where \(\beta_0(t) \) is given in (1).

Noninformative Prior \(\pi_0(\cdot) \) and MCMC: [1]

Bayesian Estimator with \(L^2 \)-loss:
\[
\hat{\beta}(t) = \int \pi_0(\theta|D) \beta_0(t) \, d\theta \tag{3}
\]
where \(\pi_0(\cdot|D) \) is the posterior and \(\hat{\beta}_0 \) as in (1).

Elicitation
Aim:
- Collect experts’ knowledge [4] about the coefficient function
Various experts provide: \(D^e = (y^e_i, x^e_i(\cdot), \xi^e_i) \) for \(i = 1, \ldots, n_e \)
 - pseudo data: \(y^e_i \) and \(x^e_i(\cdot) \)
 - certainty: \(\xi^e_i \) for each pseudo observation

Informative prior
Informative prior is defined as a fractional posterior [3] for which:
- the initial prior is the vaguely noninformative prior \(\pi_0(\cdot) \) and
- the pseudo data model is (2)
\[
\pi_D(\theta) = \pi(\theta|D_1, \ldots, D^e; w) \propto \pi_0(\theta) \prod_{i=1}^{n_e} p(D^e|\theta; w) \quad \text{where} \quad p(D^e|\theta; w) = \prod_{i=1}^{n_e} p(y^e_i|x^e_i(\cdot), \theta)^{w^e_i}
\]
Interpretation: a sequential learning approach
- from initial prior, learn from pseudo data to derive an informative prior
- from informative prior, learn from observed data to derive a posterior

Tuning Weights
Naive approach: \(w^e = \xi^e_0 \)
- Overconfidence Bias, see [4]
Deriving weights from important properties:
- Experts’ interactions (\(\xi^e_{i,j} \in [0, 1] \) is the dependence between expert \(\epsilon \) and expert \(f)
- Pseudo data weight \(\leq \) observed data weight
\[
w^e_i = \xi^e_i \times \text{(interaction)} \times \text{(lower ps. data weight)} = \xi^e_i \times \frac{1}{1 + \sum_{f \neq \epsilon} r_{\epsilon,f} \times n_e \times E}
\]

Illustrations

Prior

Posterior

The marginal posterior distributions of \(\beta_0(t) \) for each \(t \) are represented using heat maps. Red (resp. white) colour is used to represent high (resp. low) posterior densities.

Prior expectation for each expert
Prior expectation

Posterior expectation

Posterior expectation without prior information

References