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Abstract: An important part of Bayesian statistical modelling is to specify the

prior distribution of model parameters. When prior knowledge from subject-matter

experts is available, it is possible to build a model which includes prior information.

The collection of this prior knowledge is a delicate task because the statistician has

to state the experts’ knowledge in probabilistic terms. In this paper, we present two
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approaches to elicit experts’ knowledge about the Bliss model which is a parcimonious

Bayesian Functional Linear Regression model. The proposed methodologies will be

illustrated on synthetic data and will be applied to estimate the influence of the

rainfall on the production of Périgord black truffles.

Key words: Bayesian statistics; Elicitation; Expert knowledge; Functional linear

regression ; Informative prior

1 Introduction

The choice of a prior is a central issue in Bayesian modeling. A standard approach

is to determine a noninformative prior in order to perform an Objective Bayesian

inference. Nevertheless, a noninformative prior may not be an appropriate choice to

examine small samples, for instance when the data collecting process is delicate or

expensive. In this case, data may not provide enough information to inform a complex

model with relevant statistical inference. One option, among others, is to perform

Subjective Bayesian inference by modeling prior knowledge. The use of Subjective

or Objective Bayesian inference raises conceptual and philosophical discussions, see

Hoffmann (2017) for an overview. In this paper we employ a Subjective approach as

a tool which enables us to complement sparse data using expert knowledge.

Expert knowledge has to be collected in order to model an informative prior and

Elicitation denotes such a prior information collecting process. Many reviews on elic-

itation are available, see among others Garthwaite et al. (2005a); Ouchi (2004); Kynn

(2005); Jenkinson (2005). Literature on elicitation methods covers various scientific
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fields. For instance, some papers concern psychological issues, such as biais of elici-

tation when collecting information from several experts due to human behavior and

human interaction, see Kadane and Wolfson (1998) and Kynn (2008). Alternatively,

other papers can be found in application fields, for instance in economy, ecology, ge-

nomics, military intelligence or nuclear energy (see O’Hagan et al., 2006 for various

examples for which an elicitation is required). Some important literature concerning

elicitation mainly deals with the elicitation process and modeling of prior informa-

tion in probabilistic terms. In other words, the question is how to interact with

experts for collecting their knowledge on the studied subject in order to efficiently

inform prior probabilities about a model parameter θ. The difficulty of such work

is twofold. Firstly the method of obtaining information must be adapted to experts

who are often unfamiliar with probability concepts. Hence, it is usual to develop an

elicitation process which is as simple as possible for experts. For this purpose, pro-

tocols describe how to carry out successful elicitation by following important steps

(see among others Winkler et al., 1992; Cooke and Goosens, 2000; Low-Choy et al.,

2009). The second main difficulty is to include such elicited knowledge in a proba-

bilistic model. For instance, an important issue is the aggregation of knowledge from

several experts and there are mainly two manners to aggregate, which are described

in Ouchi (2004). On the one hand, the behavioral approach aims at reaching a con-

sensus, like for example the Delphi method (see Dalkey and Helmer, 1963; Chu and

Hwang, 2008) or the Nominal group method (Delbecq and Van de Ven, 1971). On the

other hand, the mathematical approach aims at gathering knowledge from experts

by pooling it (Burgman et al., 2011) or by averaging it (Genest and Zidek, 1986).

Of course, other approaches exist, see for example Hunns and Daniels (1981) and

Cooke (1991) for more details. Another way to examine the literature on elicitation
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is to consider the separation between the direct and indirect elicitation processes.

In some cases, experts can be viewed as statisticians in such a way that they may

tune prior distribution or hyperparameter values in accordance with their knowledge

of the studied subject (Zellner, 1972). Then, for a direct elicitation, experts do not

need assistance for expressing their knowledge in probabilistic terms (see for exam-

ple Winkler, 1967; Fleishman et al., 2001; Kadane et al., 1980; O’Leary et al., 2008).

However, experts have generally insufficient understanding of statistical modeling and

it may not be effecient to interview them about theoretical quantities (Garthwaite

et al., 2005b). In this case, it is necessary to perform an indirect elicitation process by

interviewing experts about observable quantities which are familiar for them (see for

example O’Hagan et al., 2006; Albert et al., 2012). As the interaction with experts is

not directly about model parameters, an effort must be made to model their elicited

knowledge with a prior.

In the context of the Linear Regression model, many elicitation processes have been

developed for dealing with specific problems or for handling a certain type of expert

information. For example, elicitation processes are introduced in order to achieve

variable selection (Garthwaite and Dickey, 1992) or for quantifying knowledge about

the error variance (Garthwaite and Dickey, 1991). For the Linear Regression model,

James et al. (2010) stress the difficulty of asking experts about regression coefficients.

As the design is usually not orthogonal, slope coefficients do not have a meaningful

interpretation and some authors deal with the elicitation of features of the regression

coefficients, as for example the sign of the regression coefficients for which an interpre-

tation is reliable (see for instance Kuhnert et al., 2005; Martin et al., 2005; O’Leary

et al., 2008). Alternatively, it is relevant to perform indirect elicitation by asking

experts about observable quantities for collecting expert knowledge about regression
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coefficients (see among others Crowder, 1992).

In this paper, we address the problem of assessing a prior distribution informed by

expert knowledge for the Bliss model which is a particular case of the Functional

Linear Regression model (Grollemund et al., 2018). This model aims to provide a

simple estimate of the coefficient function in order to ease interpretation. Suppose we

observe an outcome variable yi related to a functional covariate xi(·) depending on

the time t ∈ [0, 1], for i = 1, . . . , n. The Functional Linear Regression model (FLR)

is given by

yi|µ, β(·), σ2 ind∼ N
(
µ+

∫ 1

0

xi(t)β(t)dt , σ2

)
, for i = 1, . . . , n. (1.1)

We refer the reader to Reiss et al. (2016) for a recent comprehensive survey of methods

for fitting (1.1). The Bliss approach is based on an adaptive decomposition of β on a

set of K step functions:

β(t) =
K∑
k=1

bk
1

|Ik|
1Ik(t),

where each bk is a number and each Ik is an interval. The interest of the above

decomposition is that the union of the intervals Ik is not equal to the domain [0, 1]

and provides an interpretable exression of β (see Grollemund et al., 2018 for details).

By considering the previous constraint, The Bliss model is derived from (1.1) as

follows:

yi|µ, b, σ2,I ind∼ N
(
µ+ xi(I)Tb , σ2

)
, for i = 1, . . . , n (1.2)

where xi(I) is a vector with kth entry 1
|Ik|

∫
Ik
xi(t)dt and b = (b1, . . . , bK)T . When

each interval Ik is set as

Ik = [mk − `k,mk + `k] ∩ [0, 1] and I = (I1, . . . , IK) ,
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the prior distribution is

µ|σ2 ∼ N
(
0, v0σ

2
)
,

b|σ2,I ∼ NK
(
0, σ2Σ(I)

)
,

π(σ2) ∝ 1/σ2 (1.3)

mk
i.i.d.∼ Unif (T ) , k = 1, . . . , K,

`k
i.i.d.∼ E(a), k = 1, . . . , K,

where Σ(I) (depending on the intervals I) is the Ridge Zellner prior covariance.

The authors used this model to study the impact of rainfall on the production of the

Périgord black truffles (data set provided by J. Demerson). For this study, only limite

data was available so the coefficient function is complicated to estimate (13 observed

years and 11 parameters). Therefore, it appears important to rely on supplemen-

tary information in order to reinforce the statisical inference. Furthermore, scientists

studying truffles and truffle farmers have relevant knowledge regarding the growth

or the complex reproduction mechanisms of truffles. Such important information is

overlooked if the inference is only based on observed data.

In this paper, we aim to fit the Bliss model by taking expert knowledge into account,

so we propose an elicitation process for obtaining information by targeting two un-

derlying goals. Firstly, we aim to develop a method which is as simple as possible

for the experts. Secondly, we aim to drive the impact of expert knowledge on the

posterior distribution. Below, two approaches are developed to achieve these goals.

In the first approach, we ask the experts to provide pseudo data, in other words we

expect a set of covariate functions and associated response values which reflect their

knowledge. Furthermore, we ask each expert to state their certainty concerning theirs

pseudo data by specifying values between 0 and 1. We propose a prior distribution
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based on the elicited pseudo data and we introduce weights to tune the impact of

pseudo data on the posterior. For the second approach, we elicit features of the coef-

ficient function which are interpretable for them. A prior distribution is derived from

(1.3) by introducing a penalization term to promote parameter values in accordance

with the experts’ knowledge and a tuning parameter which drives the strength of the

penalization.

The remainder of the paper is structured as follows. In Section 2, we describe the

elicitation process for obtaining pseudo data and the prior modeling of pseudo data.

In Section 3, we propose to collect knowledge about features of the coefficient function

and a different prior distribution is introduced to incorporate this knowledge into the

model. Section 4 is a brief description of the implementation required for sampling

the posterior distributions of each proposed method. In Section 5, the proposed

approaches are applied to simulated datasets and we present an agronomic study

which aims to identify the impact of climatic conditions on the production of the

Périgord black truffles. The elicitation process is applied to scientists and truffle

farmers and we present the results obtained by using the two approaches. Concluding

remarks are given in Section 6.

2 Prior distribution based on pseudo data

In the context of The Functional Linear Regression model, elicitation of the prior

knowledge relative to the coefficient function is a laborious task. Indeed, the inter-

pretation of the coefficient function is complicated, so it is difficult to propose a value

of the function at a fixed time point or for a time period. Hence, a direct elicitation of
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the regression coefficients is not easy. Nevertheless, experts may have a valid opinion

about the impact of rainfall on the truffle production from their experience, and we

aim to capture the maximum amount of information about their knowledge. There-

fore, we propose to elicit expert knowledge by using an indirect method since it is

more convenient in this context to ask the experts about observable quantities. In the

regression framework, we identify that it is appropriate to ask the experts to provide

likely data, which we name pseudo data (see for instance Neal, 2001; Wolfson and

Bousquet, 2014; Bousquet and Keller, 2018). We claim not only that this method is

simple for the experts but also that such elicited data reflects their knowledge about

the relationship between covariates and outcomes. Moreover, we collect it without

specifying any probabilistic model.

Below, we denote the observed data by yi and xi(·), for i = 1, . . . , n, and the pseudo

data from the expert e by yei and xei (·), for i = 1, . . . , ne and e = 1, . . . , E. Moreover,

we denote by y the observed data vector, ye the pseudo data vector (ye1, . . . , y
e
ne

) and

xe(·) the vector (xe1(·), . . . , xene
(·)). We keep in mind that the pseudo data is different

by nature, being from a variety of sources. Therefore, we may consider that a pseudo

outcome yei is more uncertain than an observed outcome yi. Indeed, it seems difficult

for a person, even an expert, to accurately provide a real number. Alternatively,

one may consider that expert knowledge is learned from many observations and thus

pseudo data corresponds to a sort of valid prediction which is less uncertain than

observed data. In this paper, we deem with regard to the aforementioned application

that it is much too complicated for experts to accurately provide numbers yei and

especially to provide curves xei . However, slight modifications of the following ap-

proach may improve the accuracy of prior knowledge. Below, we propose a new prior

distribution which allows to take the uncertainty of the pseudo data into account and
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to drive the impact of the experts’ prior knowledge on the Bayesian inference.

2.1 Model

Below we derive a new prior depending on pseudo data from an initial prior which

we assume to be noninformative or weakly informative. As we aim a prior reflecting

expert prior knowledge, we define it as a kind of posterior, given pseudo data. Hence,

the proposed prior is what we learn from the experts’ opinion. Let us assume for

a moment that we obtain this new prior from pseudo data and an initial prior by

simply applying the Bayes rule. If we apply again the Bayes rule with data and

the new prior, we actually perform a sequential Bayes rule which is equivalent to

applying Bayes rule with the merged data (observed data and pseudo data) and the

initial prior. In this case, observed data and pseudo data equally contribute to the

inference although we see the pseudo data as more uncertain so their influence should

be weaker than the contribution of observed data. Therefore, rather than applying

the classical Bayes rule, we prefer to use a different rule.

Different variations of the Bayes rule have been considered, like for instance the

fractional posterior (O’Hagan, 1995 and see Bhattacharya et al., 2016 for a compre-

hensive recent review) or the generalized Bayesian posterior (Grünwald, 2012). Both

approaches define an alternative likelihood, called the fractional likelihood, as follows:

Lα (D; θ) = pθ(D)α (2.1)

where θ is a parameter, pθ(·) is the density of the Bliss model (1.2), D = (z1, . . . , zn) is

the observed dataset, and α is a tuning parameter belonging to (0, 1). The fractional
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posterior deriving from the (2.1) is given by

πα(θ|D) ∝ pθ(D)α × π(θ) (2.2)

for a prior π. In this setting, α controls the proportion of information in the dataset

used to learn the posterior from the data (and the prior). Below, we propose to use

the fractional posterior of O’Hagan (1995) to learn from pseudo data.

In a different framework, the Power Prior method (Ibrahim and Chen, 2000) proposes

to define the prior π as a fractional posterior given historical dataD0 and for an initial

prior π0,

π(θ;D0, α) ∝ pθ(D0)α × π0(θ). (2.3)

Then, the posterior given a dataset D is

π(θ|D,D0, α) ∝ pθ(D)× pθ(D0)α × π0(θ). (2.4)

In this case, we can easily understand the contribution of the historical dataset and

the contribution of the observed dataset.

In this paper, the first approach we propose balances between the Power Prior (2.3)

and the Weighted Likelihood (Hu and Zidek, 1995), which gives weights for each

datum:

Lw(θ) =
n∏
i=1

pθ,i(zi)
wi , (2.5)

where pθ,i(·) is the density of the Bliss model (1.2) for the ith datum and wi is the

weight of the ith datum zi.

The prior we propose is then:

π(θ|D1, . . . ,DE;w) ∝
E∏
e=1

ne∏
i=1

pθ,i(z
e
i )
we

i × π0(θ), (2.6)
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where De = (z1e , . . . , z
ne
e ) is the pseudo data set provided by the expert e, for e =

1, . . . , E, and ne are the pseudo data set sizes.

Note that the proposed prior is based on the likelihood pθ(·) of the Bliss model for

the sake of the posterior tractability. Thus in some sense, we model pseudo data

by using (1.2), as for observed data. A potential comment is how might the Bliss

equation (1.2) model the pseudo data ? As suggested in Grollemund et al. (2018), the

Bliss model is a straightforward description of the functional covariates’ impact on

the outcomes. Indeed, the real outcomes (yi) are only determined by average values

of functional covariates (xi) on some undetermined periods. We claim that it is also a

suitable model to describe the pseudo data. Moreover it corresponds to the experts’

way of thinking, since experts imagine pseudo truffle productions by considering the

rainfall events during the assumed main periods. They surely do not investigate all

the intricate details of the rainfall evolution. Therefore, we assume that the following

is a reasonable approximation, for θ = (µ, b, σ2, I):

yei |θ
ind∼ N

(
µ+ xei (I)Tb , σ2

)
, for i = 1, . . . , ne. (2.7)

Then, the posterior distribution given observed data and for the proposed prior (2.6)

is given by

π(θ|y,y1, . . . ,yE;w) ∝
n∏
i=1

pθ,i(yi)×
E∏
e=1

ne∏
i=1

pθ,i(y
e
i )
we

i × π0(θ) (2.8)

∝
(
σ2
)− 1

2
(n+

∑E
e=1 newe+K+1)−1

× exp

{
− 1

2σ2

[
RSS +

E∑
e=1

RSSe + µ2v−10 + bTΣ(I)−1b

]}
π0(`)

where RSS =
∑n

i=1(yi − µ − xi(I)Tb)2, RSSe =
∑ne

i=1w
e
i (y

e
i − µ − xei (I)Tb)2 and

we is the average of the weights we1, . . . , w
e
ne

. The expression of RSSe/2σ
2 suggests an

interpretation of σ2/wei as the error variance for the ith pseudo data of the eth expert.
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Thus, the higher the variance with respect to σ2, the lower the impact of the pseudo

data.

Property 1 From the posterior (2.8), we note that the sum of the weights
∑E

e=1 new
e

is similar to the sample size n. Thus, it corresponds to an effective sample size of

the pseudo data set. We observe that if wei = 1, then the ith pseudo data of the eth

expert matters like an observed data. On the contrary, if the weights are all null, the

posterior does not depend on the pseudo data.

Without loss of generality, it is convenient to assume that for a given expert e the

pseudo data vectors ye and xe(·) are centered with regards to the relative weights,

then the posterior expectation of b given the intervals I can be written as

E(b|y,y1, . . . ,yE,I) = b̂1 +
E∑
e=1

b̂2,e (2.9)

where

b̂1 = Mw
−1x(I)Ty

b̂2,e = Mw
−1xe(I)TW eye

Mw = Σ(I)−1 + x(I)Tx(I) +
E∑
e=1

xe(I)TW exe(I).

and W e is the diagonal matrix of the weights we1, . . . , w
e
ne

, see Appendix ?? for some

details.

Property 2 The posterior expectation of b, given the intervals I, splits into a part

b̂1 relative to observed data and parts b̂2,1, . . . , b̂2,E relative to the pseudo data. More-

over, we note that if the weights are null, the matrices W e are null and the posterior

expectation matches the standard Bayesian estimator of b, without prior knowledge.
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We notice from the Properties 1 and 2 that the weights largely drive the posterior

distribution, so they are important hyperparameters to tune. Concerning the Power

Prior model, the hyperparameter α is similar to the weights we deal with and Ibrahim

et al. (2015) sum up several approaches to tune it. For instance, one may put a beta

prior on α (Ibrahim and Chen, 2000) or α may be fixed from a theoretical point

of view (Ibrahim et al., 2003; Chen et al., 2006; De Santis, 2006). Concerning the

Weighted Likelihood approach, it is possible to calibrate the weights to sufficiently

downweight the observations that are inconsistent with the assumed model in order

to introduce an efficient and robust estimator (see among others Markatou et al.,

1998). As for these frameworks, different valid considerations may be investigated to

calibrate the weights wei for the proposed prior. Below, we propose an approach that

takes into account the special nature of the pseudo data. Indeed, pseudo data cannot

be considered as data or historical data.

2.2 Building the Weights

A major feature of the proposed methodology is that there is a weight for each

pseudo datum of each expert. As an interesting effect, an expert may provide a

nuanced opinion. Indeed, if he is pretty sure that, for a covariate xei (·), the associated

outcome should be yei , then he should deem that the weight of the pseudo datum

must be close to 1. On the contrary, he also may feel free to provide pseudo data for

which he is not entirely sure, by setting the associated weight close to 0. Therefore,

we consider below that the weights have to depend on the confidence of the experts

about theirs pseudo data. Hence, the experts must provide pseudo data (yei , x
e
i (·))

and certainty cei assumed to be in [0, 1]. The following rule may help the expert to
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provide certainty. If cei = 1, it means for the expert e that his ith pseudo datum is

as realistic as an observed datum. On the contrary, if his certainty is close to 0, it

means that he is doubtful about his belief. Below, we derive the weights wei ’s from

the experts’ certainty and two additional considerations.

A first approach would be to define the weights as wei = cei . However, in this case a

problem can be the potential redundancy of the prior knowledge of different experts.

For example, if experts work in the same research team, they probably collaborate to

study the subject matter and in fine they may provide similar pseudo data. Thus,

it appears important to take the experts dependence structure into account. For

this purpose, we define re,f ∈ [0, 1] the dependency coefficient between the experts e

and f and we introduce the following factor to downweight pseudo data related to

dependent experts. For each expert e, the associated weights we1, . . . , w
e
ne

are reduced

by using the factor:

1

1 +
∑

f 6=e re,f
. (2.10)

If the experts are all independent, then re,f = 0, for all e and f , and (2.10) equals 1.

On the contrary, if we elicit E completely dependent experts, each weight is divided

by E. In this paper, we propose to fix the dependency coefficients re,f from known

interactions between experts. Alternatively one may determine or estimate these

coefficients, for instance with regard to the distance between pseudo data from a

different expert.

The second consideration is about the total experts’ weight which can be higher than

the observed data weight. Indeed, if experts provide enough pseudo data,
∑E

e=1 new
e

might be greater than n. In this case, pseudo data are more influent than observed

data in the Bayesian inference. We consider in this paper that observed data must
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prevail in the learning process with regard to prior knowledge. Therefore, we force

pseudo data weight (
∑E

e=1 new
e) to be lower than the observed data weight (n) by

introducing the following extra factor:

n

ne × E
. (2.11)

Finally, considering (2.10) and (2.11) we set the weights as

wei =
cei

1 +
∑

f 6=e re,f

n

ne × E
. (2.12)

In this setting, the weight of an expert (new
e =

∑ne

i=1w
e
i ) is bounded above by n/E

and the maximum weight of the pool of experts (
∑E

e=1 new
e) is bounded above by

n. Therefore, we defined the wei ’s by taking into account the number of experts, the

number of pseudo data and the potential dependence between the experts.

3 Building a Prior Distribution using Experts’ Knowl-

edge about the Coefficient Function

In this section, we propose another approach to taking experts’ prior knowledge into

account by directly eliciting expert knowledge about the coefficient function. As

described in Section 1, the coefficient function is difficult to elicit because it is not

clearly interpretable, even for a statistician. However, we claim that experts may

think about some of its simple features that we aim to elicit. For instance, they

may have knowledge about 1) intervals for which the covariate may impact (or does

not) on the response variable and 2) if the impact is positive or negative. In other

words, the experts’ knowledge is about the sign of the correlation between y and

x(t) for t in a fixed interval, conditionally on the values x(t) on the other intervals.
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In mathematical terms, this kind of knowledge corresponds to a sign function sβ(·):

sβ(t) = 1 {β(t) > 0}− 1 {β(t) < 0}. Note that sβ(t) is simply the sign of β(t). Next,

consider that we elicit from each expert e, a sign function which we denote by sβe (·).

Furthermore we ask the expert to provide their certainty function ge(·) in such a way

that ge(t) ∈ [0, 1], since experts may have a specific certainty for each interval. Hence,

the collected sign functions and certainty functions represent the experts’ knowledge

that we propose to incorporate in the Bayesian inference by modifying the Bliss prior

distribution of (b,I). Note from (1.3) that the prior on (b,I) is given by:

π0(b,I|σ2) ∝ |Σ(I)|−1/2 exp

{
1

2σ2
bT boldsymbolSigmab− a

K∑
k=1

`k

}
.

Note that hyperparameters b and I are related to the coefficient function and also

related to the sign function. We propose the new prior given by:

π(b,I|σ2; τ) ∝ π0(b,I|σ2)×
E∏
e=1

exp
{
−τ × dist2(sβ, sβe ; ge)

}
, (3.1)

where τ is a tuning hyperparameter and dist is a distance between sign functions

which is weighted by the function ge. By appending an exponantial kernel, the prior

distribution is constrained in such a way that the hyperparameters (b,I) which are

’close’ to the experts’ sign functions have higher prior densities. Such an idea is

used and studied in Duan et al. (2018), but the exponantial kernel in (3.1) can be

alternatively viewed as a penalization term and it follows that τ drives the intensity

of the penalization.

The proposed prior leads to a new posterior distribution depending on the experts’

knowledge and it is given by:

π(b,I|y, µ, σ2; τ) ∝ exp

{
− 1

2σ2
RSS− τ ×

E∑
e=1

dist2(sβ, sβe ; ge)

}
π0(b,I|σ2). (3.2)
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In Equation (3.2), the initial prior π0(b,I|σ2) is built to be weakly informative.

Hence, the posterior distribution of (b,I) is mainly determined through the residual

sum of squares and the penalization term τ ×
∑E

e=1 dist2(sβ, sβe ; ge). Thus, the mass

of the posterior distribution of β(·) is shrunk around the set of β(·) which are in

accordance with the experts’ sign functions s̄βE.

3.1 The choice of the distance

Many choices are possible for the distance and they lead to different inferences. For

simplicity, we consider the following weighted L2 distance which eases some compu-

tations:

dist2(sβ, sβe ; ge) =

∫ 1

0

(
sβ(t)− sβe (t)

)2 × ge(t) dt.

By considering this choice, the sum of the distances in (3.1) can be rewritten as the

distance between βs and an average sign function s̄βE where

s̄βE(t) =
E∑
e=1

sβe (t)
ge(t)

ḡE(t)
and ḡE(t) =

E∑
e=1

ge(t).

One of the consequences is a more concise expression of the posterior (3.2):

π(b,I|y, µ, σ2; τ) ∝ exp

{
− 1

2σ2
RSS− τ × dist2(sβ, s̄βE; ḡE)

}
× π0(b,I|σ2). (3.3)

Furthermore, this choice induces a simplification in the implementation and reduces

the computational time. Indeed, one computation of the distance is required in (3.3)

instead of E computations of distance in (3.2).

3.2 Tuning the hyperparameter τ

Concerning the regularization hyperparameter τ , we do not have in practice any prior

information concerning the regularization hyperparameter τ . Moreover there is not
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a canonical manner to fix it. Below, we propose an approach to tackle the tuning of

τ . We consider τ as a non-random quantity and we use a Bayesian Cross-Validation

procedure to fix it.

Let τ = (τ1, . . . , τK) be a grid of given values which each leads to a different model

Mk, for k = 1, . . . , K. Bayesian Cross-Validation procedure selects the τk (or the

model Mk) with respect to the approximated utility of a model M given data D:

ūIS-LOO(τ |D) = − 1

n

n∑
i=1

log

(
1

T

T∑
t=1

pθt(yi|xi)−1
)
, (3.4)

for an Importance Sample θ1, . . . ,θT (see Vehtari and Ojanen, 2012 for more details).

In our context, we obtain the Importance Sample by using a Sampler algorithm

described in Grollemund et al. (2018) and we select τ among τ maximizing the utility

ūIS-LOO(·|D). More details are presented in Section 5.

4 Implementation

A prior based on pseudo data We use a minor variation of the Gibbs Sampler

described in Grollemund et al. (2018) to compute a posterior sample. Indeed, the

structure of the posterior distribution is not changed by taking into account pseudo

data and thus, only the hyperparameter of the full conditional distributions change.

See Appendix ?? for more details and for the expression of the full conditional dis-

tributions.

A prior based on expert knowledge about the coefficient function In Sec-

tion 3, a new prior is introduced with in particular an unusual prior distribution put
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on b, which leads to unusual full conditional distributions. Thus, we do not use a

Gibbs Sampler for sampling from the posterior distribution and we propose to rely on

a Metropolis-Within-Gibbs algorithm. We change the step of updating b by using the

Gaussian random walk proposal: b′ = b + ε where ε ∼ NK(0, ρIdK). The proposal

b′ is accepted or rejected according to the usual Metropolis acceptance rate. A major

difference with the initial Gibbs Sampler is the necessity to tune the random walk

scale ρ. In pratice, we run a short version of the Metropolis-Within-Gibbs algorithm

a few times with different value of ρ in order to determine which value leads to an

average acceptance rate between 0.2 and 0.5. In a different framework, Roberts and

Rosenthal (2001) determine that the optimal acceptance rate is 0.234 but according

to the literature, the interval [0.2, 0.5] is reasonnable for other frameworks. More

details on the proposed algorithm are given in Appendix ??.

5 Numerical results

5.1 Simulaton Study

In this section, we apply both methodologies on a simulated data set and we study the

sensitivity of the proposed methods to the experts’ certainty. We simulate a dataset

using the FLR model (1.1) for which

• µ = 1,

• xi(·) is simulated from a Gaussian Process for i = 1, . . . , 100,

• β is a given step function (the dotted line of Plot (d) Figure 1) and
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• σ2 is fixed in such a way that the signal-to-noise ratio is 5.

Thus, we obtain a data set D0 = (yi, xi(·))i=1,...,100. Below, we consider D0 as the

observed data set. We refer to Grollemund et al. (2018), Section 2.3, for more details

about the simulation prodecure.

Approach 1: a prior based on pseudo data

We simulate pseudo data from two uncorrelated experts. We assume that each expert

generates pseudo data using his own model which we suppose to be (1.1) but with

a different coefficient function used to generate the simulated observed data set D0.

Hence, we use the same model to generate a data set D1 (resp. D2) which we

consider as the pseudo data set from expert 1 (resp. 2). For each expert we generate

100 pseudo data and in the first instance we consider that each expert has a certainty

1 to each pseudo datum. We apply the methodology described in Section 2 and

Figure 1 presents the results.

Representation of the prior and posterior distributions First, we show with

Plot (a) (resp. (b) and (c)) in Figure 1, the posterior distribution of the coefficient

function given the pseudo data sets. Even if these plots represent posterior distribu-

tions, they can be viewed as prior distributions from experts concerning the coefficient

function. Next, we show with Plot (d) in Figure 1 the posterior distribution of the

coefficient function given the observed data D0, which corresponds to the posterior

distribution without any expert knowledge. Finally, Plot (e) (resp. (f) and (g)) in

Figure 1 shows the posterior distribution given the observed data set and the pseudo

data sets. As the certainty of the experts are 1 and the experts are fixed uncorrelated,
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the weight of all the pseudo data equals the weight of the observed data. Thus, for

Plot (e) (resp. (f)), the posterior distribution illustrates that expert 1 (resp. expert

2) contributes as much as the obseverd data. For Plot (g), the weight of each expert

is half the weight of the observed data.

Note that the posterior expectation (solid line) looks like an average between the ex-

pectation given the pseudo data and the expectation given the observed data, which

is an illustration of Equation (2.9) and Property 2.

Sensitivity to the certainty. Next, we vary the certainty of the experts from 1 to

0. Figure 2 presents the posterior distributions for different certainty values. Results

are illustrations of Property 1 that weights drive the tradeoff between observed data

and pseudo data. Indeed, when the weights are null, the posterior expectation given

the observed data and the pseudo data, coincides with the posterior expectation given

the observed data. Next, when the certainty increases, the posterior expectation

progressively tends to the posterior expectation given the pseudo data.

Approach 2: a prior based on the expert knowledge about the coefficient function

We apply the approach described in Section 3 on the simulated data set D0. We

simulate the knowledge of two experts by specifying theirs functions: sβe (·) and ge(·)

which correspond to the prior information of the two experts used for the approach

1 in Section 5.1. Figure 3 summarizes the simulated experts’ knowledge by showing

the related average functions: s̄βE and ḡ.

Prior knowledge. As Figure 3 illustrates, the prior knowledge is split in three

parts: with high certainty the coefficient function is
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PK1. positive for t ∈ [0.1, 0.35],

PK2. null for t ∈ [0.35, 0.50] ∪ [0.65, 0.8] and

PK3. negative for t ∈ [0.8, 0.95].

Notice that there is no prior knowledge concerning the interval [0.50, 0.65].

Bayesian Cross-Validation. We use the Bayesian Cross-Validation to select a

value of τ among a set of values τ = (τ0, . . . , τN). The lowest value of τ is fixed at

0 which corresponds to an inference without taking expert knowledge into account.

The largest value τN is more difficult to determine. As suggested by Equation 3.3,

we fix it so that the posterior expectation of 1
σ2 RSS (model fitting with respect to

observed data) and the posterior expectation of τ × dist2(sβ, s̄βE; ḡE) (model fitting

with respect to pseudo data) are of the same order of magnitude. In this case, we fix

τN = 282.19.

For each τ ∈ τ , we compute the utility ūIS-LOO(τ) by using the approximation (3.4)

and we fix the Importance Sample size T to 10000. We select the value τ = 84.66

and Plot (c) in Figure 4 shows the utility for each τ ∈ τ .

Results. Plot (a) (resp. (b)) in Figure 4 presents the posterior distribution of the

coefficient function when τ is selected by Cross-Validation (resp. when τ = 0). By

comparing Plots (a) and (b), we notice the impacts of taking prior knowledge into

account. First, we notice from Plot (a) that the posterior distribution is sharper

with prior knowledge. Next, the estimate (solid black line) is in accordance with the

prior knowledge PK1 to PK3. In particular, taking PK2 into account allows to detect

more efficiently the intervals for which the coefficient function is exactly equal to 0.
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Moreover, we notice that the estimate is equal to 0 for t ∈ [0.45, 0.50] ∪ [0.60, 0.80]

(in accordance to prior knowledge) while the true coefficient function is positive. It

is counterbalanced by an overestimation on the interval [0.50, 0.60] for which there is

no prior knowledge.
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Figure 1: Posterior distributions of the coefficient function given observed data and/or

pseudo data. Plots (a), (b) and (c) present the posterior distribution given the pseudo

data D1, D2 and (D1,D2). For these plots, the solid black line is the posterior

expectation. Plot (d) presents the posterior distribution given the observed data D0.

For this plot, the solid purple line is the posterior expectation. For Plot (a) (resp.

(b) and (d)), the dashed green line is the coefficient function used for simulating

the dataset D1 (resp. D2 and D0). Plots (e), (f) and (g) present the posterior

distributions given observed data and pseudo data.
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Figure 2: The posterior distribution of the coefficient function for different levels of

certainty. Each plot represents the posterior distribution of the coefficient function

given D0 (observed data) and D1, D2 (pseudo data). The solid purple lines present

the posterior expectation given only the observed data D0, like in Plot (d) Figure 1.

The solid black lines present the posterior expectation given only the pseudo data

(D1,D2) for different values of cei . The dashed lines are the posterior expectation

given observed data and pseudo data for different values of cei .
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Figure 3: Simulated expert knowledge and certainty by using the elicitation method

described in Section 3. The left (resp. right) plot shows the average sign function s̄βE

(resp. the average certainty function ḡE).
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Figure 4: Tuning τ with Bayesian Cross-Validation: Posterior distributions and util-

ities of τ . Plot (a) (resp. (b)) is the posterior distribution of the coefficient function

when τ is selected by Bayesian Cross-Validation (resp. τ = 0). The dashed green line

is the step function used for generating the dataset D0. The solid purple line is the

posterior expectation when τ = 0. The solid black line is the posterior expectation

when τ is selected by Bayesian Cross-Validation. Plot (c) presents the approximated

utilities uIS-LOO(τ) with respect to τ .
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5.2 Application to the Périgord black truffles dataset

We apply the proposed methologies to investigate the impact of the rainfall on the

production of Périgord black truffle from observed data and experts’ prior knowl-

edge. During the 20th century, the production of this valuable mushroom decreased

in France from one thousand tons per season to a few dozen tons (Le Tacon et al.,

2014). Several reasons have been considered to explain the decrease in the production,

such as sociological factors, management of truffle orchards or climatic variations. An

important goal is to determine the impact of rainfall on the truffles production in order

to guide the truffle farmer and to understand the effects of climate change. Measure-

ments of truffle production are difficult to obtain and in practice very little data is

available. In this Section, we study data of an orchard in Pernes-Les-Fontaines (Vau-

cluse, France) from 1925 to 1949 provided by J. Gravier (see Le Tacon et al., 2017

for a description of the data). The data covers 25 years of production and for each

harvest, the monthly rainfall during the truffle life cycle (from January to March of

the second year). Below, we address the lack of data information by including expert

knowledge in the inference. Truffle experts have studied the life cycle of the truffle and

have mainly identified two important periods. First, the truffles born in late spring

grow until they become mature in Novembre. During this period, experts think that

a hydric deficit is damaging, especially during the summer months. Hence, the first

period identified by the experts is the summer months. Secondly, it has been found

that water availibity is important to support the initiation of sexual reproduction

in the late winter (Le Tacon et al., 2016). Such knowledge will be elicited from a

collaboration with F. Le Tacon, C. Murat, P. Montpied (scientists of INRA, Nancy,

France), Joël Gravier, Pierre Cunty (truffle farmers) and Michel Tournayre (president
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of the French Federation of Truffle farmers).

Approach 1: a prior based on pseudo data

Elicitation of pseudo data. As a first step, we need to collect pseudo data from

experts. We asked the experts to provide pseudo data. The average number of

collected pseudo data is about 3. The elicited pseudo data generally correspond

to classical scenarios for them. As the experts’ knowledge is surely more complex

than 3 data, we pursued to help them to provide more data. Hence, we asked them

to give likely response values for 20 given rainfall curves. These curves was taken

from different historical data sets and we did not inform them if these curves were

observed or created. For each pseudo datum provided, we asked the expert to provide

a certainty level, which we denoted by cei and which should be between 0 and 1, for

e = 1, . . . , 6 and i = 1, . . . , ne. We informed the experts that a certainty close to 0

means that the expert doubts his pseudo datum. On the contrary, a certainty close

to 1 means that the expert is absolutely sure.

Weight tuning. As described in Section 2.2, we derive weight wei from the experts’

certainty and two extra factors. Concerning the first factor, we consider a depen-

dence structure between three experts who belong to the same research team (INRA

in Nancy). From discussions with the experts, the similarity between judgements

appears. Therefore, we consider that these experts have similar knowledge about the

impact of rainfall on truffle production. Hence, we fix a high correlation re,f = 0.8,

where e and f are relative to these three experts, and we consider that the other

correlations are null. Table 1 shows a sketch of the obtained weights in this way.
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Table 1: An example of 5 certainty values and relative weights for each expert. The

weights derive from the certainty by using (2.12) and we consider that the correlation

between F. Le Tacon and C. Murat and P. Montpied is 0.8.

F. Le Tacon C. Murat J. Gravier P. Montpied P. Cunty M. Tournayre

n1 = 23 n2 = 23 n3 = 26 n4 = 22 n5 = 23 n6 = 22

c1i w1
i c2i w2

i c3i w3
i c4i w4

i c5i w5
i c6i w6

i

0.8 0.064 0.5 0.04 1 0.16 0.05 0.005 0 0 1 0.189

0.7 0.056 0.5 0.04 1 0.16 0.05 0.005 0.5 0.095 0.8 0.152

0.5 0.04 1 0.079 0.8 0.128 0.05 0.005 0.3 0.057 0.8 0.152

0.3 0.024 0.5 0.04 1 0.16 0.05 0.005 0.5 0.095 0.8 0.152

0.6 0.048 0.5 0.04 1 0.16 0.05 0.005 0.3 0.057 0.7 0.133
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Results. Figure 5 shows the results when we take experts’ pseudo data into account

for investigating the impact of rainfall on truffle production. Plot (b) shows that the

coefficient function given the pseudo data, is positive for the late spring and the

summer, and it is negative for the late autumn and the winter. During the meeting,

the experts largely expressed that the rainfall should have a positive impact on truffle

production during summer and should have a negative impact during winter. Hence,

we notice that Plot (b) is an accurate representation of the experts’ knowledge and

that the proposed elicitation is a suitable way to collect it. Concerning the posterior

expectation of the coefficient function given the observed data and the pseudo data,

we notice that the impact of the summer is again positive. Moreover, given the

observed data only, the posterior expectaction from Decembre to March is too close

to 0 while the posterior expectation given the observed data and the pseudo data is

negative. Thus, taking experts’ knowledge into account mainly highlights the impact

of rainfall in winter.

Approach 2: a prior based on expert knowledge about the coefficient function

Elicitation of support and sign. During the meeting, we asked each expert e

to provide several types of information: a sign function sβe (periods and impact of

rainfall during these periods) and a certainty function ge (their certainty for each

period). Figure 6 shows the average sign function s̄βE and we notice that for the

experts, summer rainfall events should have a positive impact and should have a

negative impact during autumn and winter. In some sense, the average sign function

s̄βE is in accordance with what we obtain from the experts by eliciting pseudo data,

see Plot (b) in Figure 5.



Bayesian Approach using Experts’ knowledge 31

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

J F M A M J J A S O N D J F M
0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

J F M A M J J A S O N D J F M

(c)

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

0.0 0.2 0.4 0.6 0.8 1.0

−
1

0
1

2
3

J F M A M J J A S O N D J F M

Figure 5: Results obtained with the truffle data and pseudo data. Plot (a) (resp.

(b)) represents the posterior distribution of the coefficient function given the observed

data (resp. the pseudo data). Plot (c) shows the posterior distribution given the

observed data and the pseudo data. The solid purple (resp. black) line is the posterior

expectation given the observed data (resp. pseudo data). The dotted black line is the

posterior expectation given the observed data and the pseudo data.

Results. We apply the approach described in Section 3 to the truffle data set with

the previous elicited functions. We consider that τ is not random and we aim to select

a value of τ in a grid from 0 to 13.647. The Bayesian Cross-Validation procedure

selects τ = 8.355 and Figure 6 shows the posterior distribution of β(·) for this value.

We notice that the main change due to the experts’ knowledge is that the posterior

expectation of the coefficient function (dark line) is negative for the winter months
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Figure 6: Numerical results for the truffle data set when τ is determined using a

Bayesian Cross-Validation procedure. The left plot shows the average sign function

s̄βE. The right plot presents the posterior distribution of the coefficient function. The

purple line is the posterior expectation when τ is fixed to be 0 and the black line is

the posterior expectation when τ is selected by Bayesian Cross-Validation.

while it is close to 0 without expert knowledge (purple line). Moreover, for winter and

spring, the posterior density around 0 is higher than the posterior density without

the experts’ knowledge.

6 Discussion

In this paper, we present two approaches to elicit expert knowledge about Bliss model

parameters and to build an informative prior in order to perform a Subjective Infer-

ence. Properties of the approaches are studied on simulated datasets, especially for

identifying the contribution of experts’ prior knowledge on the posterior distribu-

tion. Then, we used the proposed methods to study the impact of rainfall on truffle

production from observed data and the knowledge of scientists and truffle farmers.

The first approach is based on the elicitation of pseudo data from experts. For
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experts, the method is quite simple and flexible, allowing experts to provide pseudo

data by qualifying their certainty. Hence, it is possible to elicit typical scenarios

and other scenarios for which experts are not sure. Elicitation of these different

scenarios enables us to collect complete expert knowledge. A major contribution is the

proposed prior corresponding to a fractional posterior given pseudo data. Moreover,

we observe in practice that prior distribution of the coefficient function accurately

corresponds to the experts’ knowledge that was verbally expressed. Furthermore, the

comparison between the experts’ prior distribution, posterior given observed data only

and posterior given observed data and pseudo data, enables to understand the impact

of the experts’ prior knowledge, see an example with Figure 1. The main contribution

is the possiblity to drive the impact of the experts’ prior knowledge according to the

importance of observed data by tuning pseudo data weights. In this paper, we explore

tuning weight by taking application considerations into account. For this study, we

choose to fix coefficients relative to the dependence structure between experts. One

may want to differently fix these coefficients or to tune the weight in a different way.

We consider that various successful possibilities may be explored, it depends on the

application background and what it is important to take into account. For instance,

it would be interesting to estimate the dependence structure by interacting with

experts during several meetings or by considering a distance between elicited pseudo

data. Moreover, it would be possible to tune weights according to the very different

considerations that we explain below. In this paper we consider that the impact of

the expert’s pseudo data must not exceed the impact of the observed data in the

inference but one may consider that experts create or predict pseudo data based on

a large range of past experiences. Therefore, in a conceptual sense a pseudo datum is

an aggregation of a lot of experiences, and a pseudo datum weight could be greater
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than an observed datum weight. However, if one wants to change the way to tune

weights, it does not change the remainder of the proposed method. As a consequence,

this approach seems to be a generic method to build an informative prior distribution

from expert knowledge. Therefore, it would be interesting to develop an adaptation

of this method to different frameworks and models.

The second approach aims to build a prior from expert knowledge on some inter-

pretable features of the coefficient function. Elicitation is quite simple for experts in

this case because support and sign of the coefficient function are the quantities they

usually think about when they consider the relationship between rainfall and truffle

production. In other words, the method is tailored to match their way of thinking.

We built a prior by appending an exponantial term to the inital Bliss prior in order to

penalize parameter values which are not in accordance with the elicited supports and

signs. As the supplementary term is interpreted as a penalization term, the intensity

parameter τ can be handled by using usual methods like a Bayesian Cross-Validation.

However the use of this method requires an important computational time in partic-

ular to obtain accurate approximations of the utility. Other approaches are possible,

such as putting a hyperprior on τ . However, we observed in practice that it was dif-

ficult to infer in this way the hyperparameter τ . Concerning the differences with the

previous approach, we can see that the impact of a priori knowledge can be different

on the posteriori distribution. Moreover, it is complex to determine the contribution

of prior knowledge on inference unlike the previous approach.
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