Model selection with BIC criterion.

BIC_model_choice(Ks, iter, data, verbose = T)

Arguments

Ks

a numerical vector containing the K values.

iter

an integer, the number of iteration for each run of fit_Bliss.

data

a list containing required options to run the function fit_Bliss.

verbose

write stuff if TRUE (optional).

Value

A numerical vector, the BIC values for the Bliss model for different K value.

Examples

# \donttest{
param_sim <- list(Q=1,n=100,p=c(50),grids_lim=list(c(0,1)))
data      <- sim(param_sim,verbose=TRUE)
#> Simulation of the data.
#> 	 Simulate functional covariate observations.
#> 	 Choose a coefficient function.
#> 	 Compute the outcome values.
iter = 1e2
Ks <- 1:5

res_BIC <- BIC_model_choice(Ks,iter,data)
#> K = 1
#> 	 Initialization.
#> 	 Determine the starting point.
#> 	 Start the Gibbs Sampler loop.
#> K = 2
#> 	 Initialization.
#> 	 Determine the starting point.
#> 	 Start the Gibbs Sampler loop.
#> K = 3
#> 	 Initialization.
#> 	 Determine the starting point.
#> 	 Start the Gibbs Sampler loop.
#> K = 4
#> 	 Initialization.
#> 	 Determine the starting point.
#> 	 Start the Gibbs Sampler loop.
#> K = 5
#> 	 Initialization.
#> 	 Determine the starting point.
#> 	 Start the Gibbs Sampler loop.
plot(res_BIC,xlab="K",ylab="BIC")

# }